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SUMMARY 

We consider a problem on shock wave localization in the numerical solution of one-dimensional 
unsteady problems of gas dynamics in Eulerian variables obtained on the basis of finite difference 
shock-capturing schemes. An optimization method for strong discontinuity localization proposed 
previously by Miranker and Pironneau is investigated by means of methods of classical variational 
calculus. This method may be difficult to implement when the entropy condition is included in the 
formulation of Miranker and Pironneau’s optimization problem as an active constraint. In this 
connection we suggest an alternative optimization problem using artificial viscosity in the variational 
principle. It is shown theoretically that the application of such a variational principle yields a trajectory 
which coincides with the true discontinuity trajectory in the case of a shock wave moving at a constant 
speed. On the basis of this modification one more algorithm is proposed which reduces the shock 
localization problem to a problem of minimization of a univariate function. Numerical tests corroborate 
completely the theoretical conclusions. In particular, a higher shock localization accuracy is obtained on 
the basis of the proposed algorithms as compared to the original Miranker-Pironneau method. 
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1. INTRODUCTION 

An analysis of trends in computational aerodynamics shows that finite difference shock- 
capturing schemes will continue to play an important role in the numerical simulations of gas 
flows with discontinuities, see for example recent surveys.’,’ One characteristic feature of 
these methods consists in the fact that the amount of numerical information obtained as a 
result of a problem solution exceeds by several orders of magnitude the amount which is of 
real interest for a research Another feature of shock-capturing techniques is their 
low accuracy in the vicinity of strong discontinuities which are spread over several intervals 
of the computing mesh.135s6 These circumstances give rise to two practical problems: one 
regarding the interpretation of the numerical results4 and the other the increase in accuracy 
of a difference solution in the vicinity of shocks.’ In this connection the questions of the 
development and the foundation of the algorithms for localization of strong discontinuities in 
the computational domain by the shock-capturing results are of present interest. A survey of 
a number of algorithms for localization of singularities which were applied empirically by 
various authors can be found in Reference 7. In References 7-11 the first theory is described 
which apparently justifies some methods for locating shock waves by the shock-capturing 
computation results of the one-dimensional gas dynamic problems. A ‘global shock fitting 
method’ was proposed in References 12 and 13. As a matter of fact this method is the 
method for localization of singularities in the solution. It reduces the shock localization 
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problem to an unconstrained minimization problem. Computational realization of the 
Miranker-Pironneau method has been a c ~ o r n p l i s h e d ~ ~ ~ ' ~  for the example of Burgers' equa- 
tion. In References 14 and 15 this method was applied to shock localization in the numerical 
solutions of one-dimensional problems of filtration of a multiphase incompressible fluid. In 
Reference 16 Miranker and Pironneau's method has been extended to the case of localization 
of non-stationary one-dimensional shock waves in a gas when using shock-capturing schemes 
for the computation of the overall flow field. 

The information on the shock location obtained with the aid of the above mentioned 
localization algorithms can be successfully applied for purposes of difference solution 
refinement in the vicinity of a discontinuity.17z18 To determine the shock location within the 
zone of a smeared shock wave17*18 the 'wave centre notion' was used, which coincides in its 
geometrical sense with the definition of the finite difference shock wave centre that we have 

Note that this notion was the basic one in our theoretical ~tudies.'-~'.'~ Suppose 
that the shock wave under consideration is so intensive that the jumps of basic kinematic and 
thermodynamic quantities at the shock front are O(1). Then in a sufficiently small neigh- 
bourhood of the smeared shock wave centre the finite difference solution obtained by the 
shock-capturing scheme has an error of the same order of smallness O(1). This fact follows 
from numerous computation r e ~ u l t s . ~ - ~ ~ , ' ~ * ~ O  If in this case the localization algorithm is 
applied consecutively at each time step as the first stage of the algorithm for difference 
solution refinement (similarly to References 17 and IS), then it is clear that if the accuracy of 
shock localization is low, the errors in the 'refined' difference solution in the shock vicinity 
and in the position of the discontinuity itself can reach values of the order 0(1) after a finite 
number of time steps in the case of uniform spatial computing mesh. As a result of this the 
picture of the flow under consideration will be completely distorted. Therefore, especially 
severe requirements on the shock localization accuracy should be imposed in the cases when 
the information on the shock location is to be used for purposes of subsequent refinement of 
the difference solution. In this connection it was of interest to study the shock localization 
accuracy in the case of application of the optimization approach proposed in References 12 
and 13. Below we present the results of such a study and propose some modifications of the 
m e t h ~ d ' ~ , ' ~  which are also subject to theoretical and numerical investigation. 

2. AN ANALYSIS OF THE MIRANKER-PIRONNEAU METHOD 

By analogy with References 12 and 13 let us consider Burger's equation 

au/at + aq(u)/ax = 0 (1) 

u(x,O)=uo(x), XER, O S t s T  (2) 

with the initial condition 

The function q(u )  in (1) is assumed to be twice continuously differentiable, and q"(u)fO. 
The function uo(x) in (2) is assumed to have a discontinuity at a point xo, --co<xo<~, and 

where U2 = const and U,(x> is a continuous function, such that Ul(xo - 0) - U, 2 K, K = 

const>O. As in References 12 and 13 let us now introduce two auxiliary Cauchy problems 
Pt and P- for the equation (1) with solutions u+ and u-,  respectively. As initial values let us 
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take the functions u: and u, in C'(-m,m) such that 

q = u o  for x<x, 

ugt=uo for x>xo 

Let x = c(t) be some approximation of the discontinuity trajectory x = e(t) in the solution of 
the problem (l), (2). Let us introduce the f u n c t i ~ n l ~ , ~ ~  

m t ) ,  t) = {cp(u-(b(t), t)) - du+( l ( t ) ,  t>)}/{u-(5(t) ,  t )  - u+([(t>, t ) }  (4) 

as well as the function 

mw, 4(t>, t )  = J(3 ( t ) ,  t )  - k(t> (5 )  

where i ( t )  =ddf(t)/dt. Now consider as in References 12 and 13 the non-negative functional 

The Rankine-Hugoniot condition implies the equality I ( ( )  = 0. Since at t = 0 the discon- 
tinuity position is known according to (3), we can set [(O) = xo. The position of the abscissa 
x = c(T) is generally unknown (it is to be determined). In this connection it is natural to 
impose at the right end t = T the transversality condition 

2mi I t = T  = 0 (7) 

where Fi = (a/a[)F(<, 4, t ) .  
Subsequently in Section 5 we shall present computational results which validate the use of 

the condition (7). Thus, let us consider the following variational problem for the functional 
(6) : 

I(c) --+ min, [ (O)  = xo, 2FF$J,=, = 0 (8) 

Regarding (3) let us set ~4; = U,. Taking into account the properties of equation (1) we have 
that u+(x, t )  = U,. The function u-(x, t ) ,  being the solution of the auxiliary problem P -  may 
be determined similarly to References 12 and 13 as the solution obtained by a shock- 
capturing scheme (in References 12 and 13 the Lax-Wendroff scheme was used for this 
purpose). Thus in the solution u-(x, t) the shock front is approximated by a smeared shock 
wave zone occupying several mesh intervals on the x-axis. 

The Euler-Lagrange equation corresponding to the functional (6)  has the form 

Employing the formula (5)  let us rewrite equation (9) as follows 

By virtue of the construction of the solution u-(x, t) the relationship 

au-  au- - == -cp'(u-) - 
at ax 
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is valid. Making use of the the formulae (4) and (11) it is easy to  find that 

du-  
Jt+JJr = - (u--  U 2 ) - 3 z  (t;(t), t)((Cq(u-)-q(U2)1/(u-- U2)}-cp’(u-))2 

cp ( U,) = cp( u-) + cp‘( u-)( U, - u-) + @’(U*)( u, - u-)” 

(12) 

Let us now employ the formula 

(13) 

where u*€[U2,  u-(t;(t), t ) ] .  With the formulae (12) and (13) in view let us rewrite equation 
(10) in the form 

du- 
dX 

i =  - ( u - -  U2)-1-(5(f), t)[;cp”(U*)]2 

When an approximate solution obtained by a shock-capturing scheme is used for u-(x, t ) ,  
then in the smeared shock wave zone d ~ - l d x < O . ~ ~  In addition, we use such a function 
u-(x, t) that u p >  U2 in the smeared shock wave zone. Therefore we obtain from (14) that at 
the initial data (3) always i > O .  This inequality means that the shock wave found as a result 
of the minimization of functional (6) always accelerates independently of the actual be- 
haviour of the true discontinuity. Thus the solution of the variational problem (8) in the 
general case does not coincide with the true discontinuity trajectory in the solution of the 
problem ( l ) ,  (2). This result may be formulated as 

Theorem 1 

If the following conditions are satisfied: 
(a) In Burgers’ equation (1) the function q ( u )  is twice continuously differentiable and 

(b) The solution u-(x, t )  of the auxiliary Cauchy problem for equation (1) satisfies the 

(c) The initial function uo(x) has the form (3) where 

cp”(u)fO at u f O .  

inequality du-(x, t)/dx < 0 in the smeared shock wave zone. 

U , ( X ) E C ’ ( - ~ ,  xo), U,=const, U,(x,-O)- U,?K, K=const.>O 

then the solution C ( t )  of the variational problem (8) where I(t;) is determined by the 
formulae (4)-(6) satisfies the inequality t ( t ) > O  for OzstsT and at finite mesh sizes. 

Remark. 

Similarly to References 12 and 13 the variational problem (8) for the functional (6) does 
not contain the entropy condition 

4Jt(u(5(t) + 0, t ) )  5 40)  5 cp‘(u(S(t) - 0, t ) )  

in the form of active constraints. Note by the way that the inequality u-> U, which we 
assumed in the proof of Theorem 1 and which follows from condition (b) implies satisfaction 
of the entropy condition at least in the case when q” (u)  > O.*’ In this connection we note also 
that computational results presented in References 12 and 13 for the case of Burgers’ 
equation (1) with q ( u )  =O.5 u2 confirm our theoretical result. On the other hand the 
Miranker-Pironneau method may be difficult to implement when the entropy condition is 
included in the formulation of an optimization problem for the functional (6) in the form of 
two active constraints. In this connection we suggest and investigate in the next section an 
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alternative optimization problem using artificial viscosity in the basic functional. This 
suggestion was inspired by the well-known fact that the entropy condition can be enforced by 
introducing artificial viscosity terms when calculating flows with shock waves, see for 
example References 5, 6 and 22. 

Now a natural question arises on the size of the difference [{ ( t )  - L(t)l. Let us show that in 
the case when the Miranker-Pironneau functional (6) is used for shock localization in some 
model gas dynamic problem an exact formula can be obtained for the extremal I(t) providing 
the solution of the problem (8). 

Consider a problem on the motion of a stationary shock wave in a gas. Following 
Reference 5 let us employ the one-dimensional gas dynamic equations in Eulerian variables 
in the presence of the artificial viscosity q of the form 

q = ah2p[min (adax, 0)12 (15) 
introduced additively into the pressure. In (15) p is the density of the gas, u is velocity, h is 
the step of a uniform computing mesh on the x-axis and a is a dimensionless constant, a 20 .  
Consider the progressive wave type solutions of the above mentioned equation system, that 
is the solutions depending only on the variable 

y = x -DT-xo (16) 
where D = const. is the speed of a steady shock wave and xo is an arbitrary constant. Then 
the equation system under consideration may be integrated once. As a result of this the 
following system is obtained 

p(u - D )  = c1 = m 

p +q + m(u - 0) = c, 

+$(u-D)” +(p+q)(u-D)=C, m[m I 
In (17)-(19) C1, C,, C, are integration constants and y is a constant entering the equation of 
state 

P = (Y - (20) 

where p is pressure and E is the specific internal energy. 
Let us ascribe to the arbitrary constant xo entering into (16) the following physical 

meaning: let xo be the abscissa of the smeared shock wave centre in the solution of the 
system (15), (17)-(19) at t = 0, that is 

E(0) = xo (21) 

Then the trajectory of the smeared shock wave centre at t 2 0 is described by the equation 

X = E ( t )  = Dt + xo (22) 

and thus it coincides with the steady shock wave trajectory. The quantities determining the 
state behind and before the shock front will be marked by subscripts ‘1’ and ‘2’, respectively. 
As in Reference 10 these states are assumed to be constant. Let V(y) = l/p. As in Reference 
10, let us find from the system (17)-(19) p, u, p, q as functions of the specific volume V. 
Assuming that the value of m in (17) is given, the constants C,, C, are determined from the 
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conditions q(V,) = 4(V2) = 0. Then p, u, p, q as functions of V are found as'" 

p = 1/V, u = m V + D  

Analogously to (4)-(6) let us introduce the functional I ( { )  by the formulae (24), (5) and (6) 
where 

J ( m ,  t )  = [(P + PU2)(5(t) ,  t )  - (P2+ P,U31/ 

[(pu(C(t), 0 - P2U21 (24) 

It is assumed in (24) that p, p ,  u is the solution of the system (23), (15) subject to initial 
condition" 

V(0) = 0 . 3  V, + VZ) 
Then 

V(y) = 0.5[V,+ V2+(V2- V,) sin by] 

b = (l/h)[(y + 1 ) / ( 2 ~ ) 1 ~ . ~  

(25) 

(26) 

where 

Since we consider solutions of progressive wave type, the Euler-Lagrange equation (10) may 
be rewritten in the form 

dJ  i- (J-  0) - = 0 
dY 

With (24) and (16) in view let us introduce the function 

v(t) = {( t ) -DT-xo 

Then equation (27) may be rewritten as follows 

dJ 
dv 

6 - ( J  - D )  - = 0 

Employing the formulae (23) and (24) it is easy to find that 

m2 
D 2 J(u) = [ D2 -- ( y  + 1)V2(V- VJ 

where 

V =  V(v)=0.5[V,+V2+(V2-V,)sin bv(t)l (30) 

(3 1) 

(32) 

Making use of the formulae (29) and (30) let us rewrite equation (28) in the form 

ij - bc(1 +sin bv) cos bu = 0 

c =Em2(? + 1)Vz(Vz- Vi)/(4D)I2 

where 
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and the constant b is determined by (26). Let us search for the solution of equation (31) in 
the interval [0, TI which satisfies the boundary conditions 

(0) = 0, J ( v  (7’)) - 2 j (  T )  - D = 0 (33) 
Applying the substitution 5 = s(v) as well as substitutions 

2 = bv, x = tg(z/2), t1= (x + l)/(x - 1) 
sin2 cp = (af + a;)/(a$ + t:) 

we can write the general solution of equation (31) as 

t +A2 = dA1)F(cp\a) 
where Al, A2 are integration constants, 

o(A,) = (2/b)[A1(1 + A,) ( l+  A Z ) ( a f +  a:)]-”’ 
A1 = u + J(v2- v), A2 = v - J(v” - u),  u = c/A1 

a: = (A, - l ) / ( A l +  l), a: = (1 - A & ( l  +A,) 

(34) 

(35) 

a = arcctg (aJa2) = arcctg [ ( z ; ~ + ; ( ~ -  1))0’5] 
v -  (v-1) 

and F(cp\a) is the incomplete elliptic integral of the first kind.z3 The solution (35) is valid for 
u> 1. Employing the boundary condition v(0) = 0, the chain of substitutions (34) and the 
formula (35) it is easy to find the constant Az as a function of the constant A,: 

Let  us find the integration constant Al employing the second condition in (33). Let us 
introduce the notation 

r ( t )  = b{A,J[v(u - l)]}o”(t + A,) (36) 

Then the formula (35) may be rewritten with (34) in view as 

(37) 
1 

u(t)=-[2arctg((a:+~;)~” ds r(t))-d2] 

where by definitionz3 ds r = dn r/sn r, dn and sn being elliptic Jacobi functions.23 Employing 
the formulae (29) and (30) let us write the transversality condition J(v(T)) - 2j(T) - D  = 0 in 
the form 

b 

Jc[l+sin(h(T))]+v(T) = O  (38) 

Making use of the formulae (34) and (37) we find from the condition (38) the following 
equation for the determination of the constant A,: 

cn r(T) = [(l- rn)/rn]O”” 

rn = sinz a! = a$/(a: + a;) 

Considering the behaviour of the left hand side and of the right hand side of equation (39) as 
functions of the constant Al it is not difficult to show that equation (39) has the single root 

(39) 
where 
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Al = c. However, the solution (35) becomes invalid at such a value of Al. Therefore the case 
Al = c should be treated separately. As a result of this treatment the solution of the equation 
(31) can easily be obtained in the form 

(40) 

by using (34) where A2 is an integration constant. From the condition v ( 0 )  = 0 we find that 

1 A2= T- 
b J c  

and from the transversality condition we easily find that the '-' sign should be taken in 
formula (40) before Jc.  Thus in the case A , = c  the solution of equation (31) under 
conditions (33) is given by the formula 

In the case of a shock moving from the left to right rn < 0, V2 > V, and then we get from (30) 
that dV/du > O  at lv(t)l< 7r/(2b). Consequently the use of the solution (30) in the functional 
(6) is valid only at such values of c ( t )  that 

Iu(t)ls 7r/(2b) (42) 

Employing (41) it is easy to show that at any a > 0 in (15) the inequality (42) holds. It is easy 
to  get an upper estimate for Iu(t)l from (41). Really, with (26) in view 

lu(t)l I h(7r/2)[2a/(y + 1)10'~, t r o  (43) 

If, in particular 
a 5 2 ( y  + 1)/(7r2) (44) 

then l u ( t ) l s  h. Since at t > 0 the inequality 

arctg [( 1 + ( b  J c )  t)-'] < 7r/4 

holds, it follows from (41) that u ( t )  C O .  This means that at t > O  the shock front calculated by 
the extremum of the functional (6) ,  (29), (30) lags behind the true shock front. It is 
interesting to note that in the preceding example with Burgers' equation the situation was 
the opposite. Substituting the exact solution (41) into the functional (6), (29), (30) it is easy 
to find that I(c)=O. Although the deviation \u(t)l becomes greater as t increases, under 
proper choice of the dimensionless coefficient a in (15) one can obtain that the inequality 
Iu(t)l zs h will be valid for any t LO. However, (44) yields values of the quantity a too small 
for the successful application of the pseudoviscosity (15) (cf. Reference 5). Thus in practice 
the value Iu(t)( can reach a magnitude of several intervals h. On the other hand it follows 
from the estimate (43) that the difference v ( t )  tends to zero with the mesh size. However, in 
practical computations we always use finite mesh sizes, furthermore, the computing mesh is 
generally more crude in multidimensional computations. 

3. MODIFICATION OF THE BASIC FUNCTIONAL 

In this section we derive and study some modifications of the basic functional (4)-(6) with 
purpose of increasing the discontinuity localization accuracy when an optimization procedure 
is used which is based on such a functional. 
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Let us write the Euler equation system for an inviscid, compressible, non-heat-conducting 
gas as follows 

where 
aw/at +acp(w)/ax = 0 (45) 

PU 

w = (i), cp(w) =( p +pu2  ) , E = E + u2/2 (46) 
PU + 

The system (43, (46) is completed by the equation of state (20). Let us approximate (43 ,  
(46) by a conservative difference scheme of the rth order of accuracy (1 S r ) .  As was shown 
previously," the first differential approximation (f.d.a.)22,24 of such a difference scheme is 
representable in divergence form" 

awlat i-acp(w)/ax = aQ(x,  t ) / ax  

Q(x ,  t )  = Q(w(x, t), h aw(x, &)/ax, . . . , h' a'w(x, t ) /ax ' ,  X, t, h, T )  

(47) 

(484 

In a more detailed form the vector Q(x ,  t )  may be written as 

and 

Q = O(h') + O(+) 

In (48) T is the time step and h is the step of the uniform computing mesh on the x-axis. In 
accordance with (46), (47) let us introduce the notations 

w = {wi ,  W Z ,  ~ 3 1 ,  CP = { c ~ i ,  (PZ,  ( ~ 3 1 ,  Q Qz, QJ 
where 

w1 p, w2 pu, w3 = pE, cpl = pu, (p2 = p + pu2, cp3 = pu + puE 

As in the foregoing section let us consider the progressive wave type solutions of the system 
(47), that is the solutions depending upon the variable y defined by (16). Then the system 
(47) may be integrated once: 

-Dw(y )+cp(w)+C=Q(y)  (49) 

where C is a constant vector. As in References 7, 10 and 19 we search for the solution of the 
system (49) which satisfies the conditions 

where W, and W, are constant vectors satisfying the Rankine-Hugoniot conditions. Then 
the vector C in (49) should satisfy the requirements 

c = ow, - cp( W,) = ow, - cp( W,) (5 1) 

As was shown the exact solution of the problem (49), (50) describes well the 
actual behaviour of the difference solution in the zone of a smeared strong discontinuity. For 
example, the corresponding relative error obtained in Reference 19 did not exceed 4 per 
cent for shock waves of finite intensity. Let in (50) 

Wi ={Wjl, Wjz, i = 152 

Employing the formula (5  1) let us rewrite equation (49) for the kth component (1 5 k 5 3) as 
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Let us now consider, on the basis of (52), the functional 

Theorem 2 

If (a) the first differential approximation of a difference scheme approximating the system 
( 4 9 ,  (46) is representable in the form 

where B is a 3 x 3 matrix whose elements have an order of smallness O(h') + O ( T ~ ) ,  r 2 1, 
and (b) the system (54) possesses the smooth solution w = w(y) ,  y = x - Dt - xo which is 
unique up to translation along the x-axis, and which satisfies the conditions (50) where W 1 ,  
W2 are constant vectors satisfying the Rankine-Hugoniot conditions across the steady shock 
wave moving at a speed 0, then the solution of the variational problem 

rk(c)+min> c(o)=xO (55 )  

Since we have that w = w(y) ,  equation (59) may be rewritten by analogy with (28) as 

Dt - xo) = 0 

It is easy to find from (57) with (52) in view that 

J k ( Y )  = D (61) 
In regard to (61) it is easy to obtain from (60) that i(t) = 0, therefore, the general soiution of 
equation (60) has the form 

C(r)=c,t+c2 (62) 
where c l ,  c2 are integration constants. It follows from the condition ((0) = xo that c2 = x,,. To 
determine c1 let us make use of the transversality condition (56). It follows from (52) that 

Qk (y)  = (Pk ( w )  - ( P k ( w 2 )  -Dwk + DwZk (63) 
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Substituting (63) into (56) we obtain that i ( T )  = D. Therefore it follows from the transversal- 
ity condition (56) that c ,  = D  in (62). 

Example 1 

Consider again the system (17)-(19). In this case 

Q(w> = (0 ,  -9, - q U l  

where q, u can be uniquely determined as functions of the specific volume V by means of the 
formulae (23). In its turn the formula (25) provides a smooth and unique transition from the 
state ‘1’ behind the shock front to the state ‘2’ before the front in the case of the quadratic 
artificial viscosity (15) (see also Reference 5) .  Thus in this case the conditions of Theorem 2 
are satisfied. Earliergz” we have shown that the accuracy of the shock front localization by 
max q depends substantially on the values of dimensionless coefficients entering the 
expression for q. In the case of shock localization on the basis of the functional (53) the 
localization result does not depend on the form of q, as follows from the proof of Theorem 2. 
It is only required for q to ensure a unique and smooth transition from one state to another 
in the steady shock wave. There is no doubt that this is a positive property of the functional 
(53). 

Example 2 

Consider the ‘breakdown of discontinuity’ scheme proposed by Godunov.26 In the case 
u > c > O ,  where c is the speed of sound, the f.d.a. of this scheme is representable in the 
form” 

-+-=- aw a [B(w, h, T )  ”1 
at ax ax ax 

where 

h ? -  
2 2  B = - A - - A 2 ,  A=acp(w)/aw (65) 

Substituting w = w(y), y = x - D t - x ,  into (66) we can find” that 

dw 1 
-=~~w)=--B*(w)[cp(w)-Dw+C] dY det B 

where B” is the adjoint of the matrix B 
3 

det B = n 
j = 1  

XI, X2, X3 are eigenvalues of the matrix A, 

A , = u - c ,  A ~ = u ,  A ~ = u + c  

By virtue of the Courant-Friedrichs-Lewy stability condition 

( d h )  max ( l u l t  c) < 1 
Y 

we obtain, with (67), (68) in view, that det B # 0. Thus the formula (66) uniquely determines 
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dw/dy. Consequently one of the necessary conditions for uniqueness of the solution w(y) of 
the problem (70), (65), (50) 

is satisfied at u > c > 0. It follows from (67) and (68) that at the point where u = c det B = 0. 
Then from the assumption on the boundedness of Idw/dy) at this point we obtain with regard 
to (66) that at the point u - c = 0 a saddle-like singularity of the solution w(y) of the system 
(66) with boundary conditions (50) takes place (see also Reference 19). Detailed investiga- 
tion of the qualitative behaviour of the integral curves in the vicinity of this saddle-like 
singularity and in the subdomains where c > u > 0, u > c > 0 represents a complicated 
mathematical problem whose analysis goes beyond the scope of the present paper. Below, in 
Section 5, we present some results of practical application of the functional (53) with k = 1. 
In this case the expression for Q1([, t) has the formz7 

It follows from these examples that, at least in the case of a stationary shock wave, the use 
of the functional (53) provides a result coinciding with the exact discontinuity trajectory. This 
fact constitutes the advantage of the functional (53) over the functional (4)-(6). 

4. SHOCK LOCALIZATION ON THE BASIS OF FUNCTION 
MINIMIZATION 

It follows from the construction of the basic functional (4)-(6) or (53) that it is necessary to 
store in the computer memory the values of the quantities u, p, p ,  E found as the solution of 
finite difference equations approximating the Euler equation system (43,  (46) in a domain 
ilt(T) of the (x, t )  plane. To estimate the minimal size of this domain along the x-axis at 
T = NT where N is a positive integer, let us make use of the stability condition (69) and 
Zemplen's theorem." Really, in virtue of this theorem and the condition (69) the shock front 
cannot propagate a distance exceeding h during the time T. Let xo be the discontinuity 
abscissa at t = 0. Then the domain a(T) includes all those (x, t )  points for which the 
following inequalities are satisfied 

xo- nh 5~ 5 xo+ nh, IZ = 1, . . . , N 

One can get rid of the requirement of additional storage if instead of the problem on 
minimization of the functional (53) the minimization problem for some function F(l(t)) is 
considered for required moments of time t. Let us consider the following function on the 
basis of (53): 
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where Cn+' = C(t""), t"+' = (n + l ) ~ ,  w-, w+ are the solutions of the auxiliary problems P- 
and P', respectively (cf. Section 2 and also Reference 16), tTl(t"+l) is some difference 
approximation of the derivative t(t"") employing the step T ~ = P T ,  P z l .  al, a2, a3 are 
penalty constants, (Yk 20, a1 + a2 + a3 = I. The simplest approximation for Ll(tn+l) is as 
follows 

tT1(tn+l) = [l(t"")- {(t"" -Tl)]/Tl (73) 
Let us briefly consider the question of the limit trajectory C(t)  to which the solution of the 
problem 

tends as T -+ 0, h + 0. Let in (72) w: = wzk = const. and let the function (72) be applied for 
stationary shock wave localization. Let w(y), where y where y is defined according to (16), 
be the exact solution of the problem (49), (50). As has been shown19x25 the difference 
solution wi(y) approximates well the solution w(y) in the zone of a smeared shock wave at 
finite h, T. Suppose now that this approximation property holds also at 7-0 ,  h -0, and 

h" I 13"w,/ax'" - d"w(y)/dy"l 5ClhP1+ C27'2, rn = 0,1,  . . . , r (75) 
where PI, P2 are positive constants depending on the order r of the finite difference scheme 
employed. If the simplest difference approximations are used for the x -derivatives entering 
into Qk (for example a one-sided difference for awh/ax), then it is clear that 

\(Qk(Wi, h aw,/ax,. . . )-Q~(w(Y), h dw/dy,. . .)IsC3hP3+C4TP4 

P3=r+min(1,Pl), P4=r+P2 

(76) 
where 

with the definition (48) in view. When using (73) we have that 

[~(t"")-~(tn"-T1)]/71 = k(t"")+ O(P7) (77) 

In regard to the estimates (75)-(77) and the formula (52) it is easy to see that 

Let 8C be the error in determining the discontinuity abscissa when some method of 
numerical minimization of the function F(C(t"")) is used and let 6F be the corresponding 
error in the value of the function F. Then 

8F = O((8C)') (79) 

according to general considerations presented in Reference 28. On the other hand it is well 
known that the width of the zone of discontinuity 'smearing' is O(h).5,6722 Therefore 86 - 0 
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as h + 0 and then 6F-+ 0 according to  (79). At each finite value of h, 7 the procedure for 
numerical minimization of the function F (72) finds the minimal possible value of the 
function F. It is obvious that this minimal value is F = 0 (in practice we obtained the values 

at chosen h, T and at chosen accuracy of the determination of the minimum 
abscissa). Therefore the limit trajectory c( t) satisfies the equation 

F S  

[k(t"+l> - 012 = 0 (80) 

Since the value l (0)  = xo is given, it can be easily seen from (80) that the limit trajectory c( t )  
coincides with the true discontinuity trajectory. 

Thus we have shown that in the case of a stationary shock wave the minimization problem 
(74) and the problem (58), 1 s  k 5 3 ,  where &(t) is determined by (53), are equivalent in the 
sense that their solutions coincide in the limit as h + 0, T 0. This means that at sufficiently 
small h, 7 the solutions of these problems will be close to each other. 

5. COMPUTATIONAL RESULTS 

It was interesting to check by direct computation the validity of the analytic solution (41) 
obtained in Section 2 in the process of the analysis of Miranker and Pironneau's method. In 
accordance with considerations preceding the derivation of the formula (41) we have 
considered the problem of the motion of a one-dimensional stationary shock wave. The 
solution profiles of the system (17)-(19), (15) at each fixed t 2 0 were set in accordance with 
the exact solution (23), (25). In the equation of state (20) we have taken y = 2  as in 
Reference 10. The shock wave intensity was specified by imposing the following values (the 
meaning of the subscripts is the same as in Section 2): p1 = 5, p2  = 1, u2 = 0, p2 = 1. The shock 
wave trajectory was observed in the region 0 5 x 5 100h, 0 5 t 3007 where h = 0.02, 
T = 0.002. The width X of the 'smeared' shock wave zone in the case of pseudoviscosity (15) 
is given by the formula5 

x = Th[2a/(y + 1)y5 (81) 
from which we find at a = 3 ,  y = 2 :  X ~ 4 . 4 4 h .  As was noted previously by several 
aUthors,6.19329,3~ in some cases the shock wave is spread over more than 10 cells. To simulate 
this situation and to examine the shock localization accuracy in this case we have used in (15) 
also the value a = 15. In this case we find from (81) that X ~ 9 . 9 5 h .  A technique for shock 
front localization by maximum of pseudoviscosity q was analysed in Reference 10 and it was 
shown that in the case of the quadratic viscosity (15) the abscissa x* of the point of max q is 
placed to the left from the true abscissa xf of the shock front, and 

( x * - x J / ~  = -[2a/(y+ I)]"" arcsin [ ( J v ~ - J v ~ > / ( J v , + J v , ) ~  (82) 
At a = 3, y = 2, V, = 0.5, V, = 1 we find from (82): (x*- xJ/h = -0.243847; similarly, at 
a = 15, y = 2,  V1 = 0.5, V2 = 1 we obtain (x* - xJ/h = -00545259. 

In the numerical realization of the Miranker-Pironneau optimization approach the basic 
functional (6) was minimized by the steepest descent method as in References 12 and 13. 
The integral (6) as well as the integrals and the x-derivatives entering in formulae of the 
descent method presented in References 12 and 13 were approximated by the formulae of 
the order of accuracy O(T)+ O(h)  as in References 12-16. The profiles of the quantities u, p ,  
p in the zone of smeared shock wave which are necessary for computer implementation of 
the minimization a l g ~ r i t h m ' ~ , ~ ~  were stored for the moments of time ti = j p ~  where we have 
taken p = 6. By this computer memory was economized which was necessary for the above u, 
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p ,  p profiles. The zeroth approximation &(t)  was set by using the fact that in the zone of a 
'smeared' shock wave the inequality au/ax<O takes place. With this in mind we have 
assumed 10(t) at fixed t to be equal to the abscissa of that end point of the smeared shock 
wave zone which corresponds to the state behind the shock front. This abscissa was 
determined by analogy with Reference 31. In some cases we arbitrarily moved this abscissa 
to the left by a distance which reached 10h for large values of t (this displacement was 
accomplished by the formula ~o(t)=xo+0~7(&,(t)-xo), that is only for t > O ) .  The con- 
vergence of the steepest descent method described in References 12 and 13 took place also 
in this case. Four to twelve iterations were needed to reach an abscissa localization accuracy 
of the order lOP3h. 

To locate the shock front by max q we determined the cell of the grid on the x-axis where 
max q was reached at fixed t, and an approximate abscissa c ( t )  of the shock front point was 
set as an abscissa of the centre of this cell. In Figures 1-5 the dimensionless time t /T is 
measured along the abscissa axis, and the error 

rxf(t) - 5(t)l/h (83) 
is measured along the ordinate axis. In (83) c( t )  is the shock front abscissa determined with 
the aid of some optimization algorithm and xf(t) is the shock front abscissa computed in 
accordance with the exact solution. It follows from Figures 1 and 2 that the trajectory 
c( t )  = x obtained by numerical minimization of the Miranker-Pironneau functional (24), (9, 
(6) agrees very well with the analytic solution (41) at different values of the coefficient 'a' in 
(15). An especially good agreement between the numerical solution and the exact one (41) 
takes place at a=15, see Figure 2. We explain this by the fact that with increase in the 
coefficient a in (15) the profiles in the shock wave zone become more smooth, and as a 
consequence of this the size of truncation errors caused by the use of one-sided differences 
for aJ(c( t ) ,  t)/dx in References 12-16 and of the formula of rectangles for (6) diminishes. 
Similar considerations explain the increase in discontinuity localization accuracy by means of 
the new functional (53), k = 2, as the coefficient a in (15) increases. It should be noted that 

a 
J. 
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Figure 1. Localization error (83) as a function of time: a = 3 in (15); - localization by maxq where q is 
pseudoviscosity (15); - - - the use of the functional (53) with k =2, Q2=-q; -.-.-the function -v(t)/h where u(t) 

is the function (41); 000 the use of the original Miranker-Pironneau algorithm 
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Figure 2. The same notations as in Figure 1: a = 15 in (15) 

the use of the functional (53) provides a higher localization accuracy than in the case of the 
functional (24), (9, (6) (see Figures 1 and 2). 

At the same input data as for Figures 1 and 2 we have used the localization method based 
on minimization of the function (72). The minimization of the univariate function (72) was 
performed on the BESM-6 computer by using a standard subroutine MNGGR entering in 
the mathematical software of BESM-6. The application of the Fibonacci method for finding 
a local minimum of the function is an essential element of the subroutine MNGGR.32 
Corresponding results for different values of a in (15) are presented in Figure 3. It is easy to 

3 L--++** , , I  . .  , 

0 100 200 300 

Figure 3. The use of the functional (53) with k = 2, Q2= -4: --- a = 3 in (15); -.-.- a = 15 in (15). Minimization 
of the function (72), (73) by Fibonacci method: AAA a = 3 in (151,000 a = 15 in (15) 
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Figure 4. A problem on stationary shock wave: - localization by max l Q l l  where Q1 is the function (71); 
the use of the functional (53) with k = 1, QI  is computed by (71); AAA minimization of th function (72), (73) by the 

golden section method; - - - original Miranker-Pironneau algorithm 

see that the localization results on the basis of the minimization of the function (72) and on 
the basis of the functional (53) with k = 2, practically coincide. This agrees with theoretical 
conclusion of Section 4. 

In Figure 4 the results of stationary shock wave localization obtained from the difference 
solution by the ‘breakdown of discontinuity’ s ~ h e m e ‘ ~ , ~ ~  are shown. In this case h = 0.05, 
T = 0-008, y = 2, p1 = 5 ,  pz = 1, u2 = 0, p2 = 1 and the time interval was 0 5 t I 8 0 ~ .  It is seen 
from Figure 4 that the error (83) becomes greater as t increases in the case of application of 
the Miranker-Piranneau functional (6). The first results on the theoretical foundation of the 
shock localization technique based on a maximum of the approximation viscosity of a 
difference scheme are contained in Reference 19. In the case of the scheme of Reference 26 
one of the components of the vector of the leading term of approximate viscosity is given by 

2mool 1.00 

-1.00 o*ool 
1 

0 40 80 

Figure 5 .  The same notations as in Figure 4. The problem on the propagation of an unsteady shock wave in an 
inhomogeneous atmosphere 
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the formula (71). The difference approximation of the function (71) employing one-sided 
differences for y, px, px represents a piecewise-constant function; more precisely, it is 
constant within each interval ( j  - l)h 5 x I jh, j = 1,2,  . . . . In this connection the shock front 
obtained by maxlQll will propagate stepwise, which is seen in Figures 1, 2, 4 and 5. 
However, if the front abscissa searched for enters explicitly in the localization algorithm 
employed, as takes place in the case of the functionals (6), (53) and the function (72), then 
the above abrupt changes in the located discontinuity abscissa vanish despite the discrete 
character of the difference solution on which basis the shock front was localized. This feature 
of localization techniques (6), (53) and (72) is easily seen in Figures 1-5. A qualitative 
explanation of this behaviour can be given using the example of the function (72). Let us 
take in (72), (73) two such values el, c2 of the continuous variable c(t"") that el# cZ and, in 
addition, 

4%(W-(Slr t"+l>> = (Pdw-(I2, t"+l)) 

Qk Ic=tl = Qk Ic=cz 

Then it is easy to be convinced with the aid of (72), (73) that F(cl)#F(c2). Minimization 
results of the function (72) shown in Figures 4 and 5 are obtained by the golden section 

Only 17 evaluations of the function F(("+') were needed to  compute the 
abscissa en+' with an error 0.01h. 

Although the theoretical foundation of localization techniques described in the foregoing 
section was carried out only for the case of a stationary shock wave, it was interesting to see 
whether the new localization techniques described above are applicable to problems with 
non-stationary shock waves. We have considered a problem on a self-similar shock wave 
caused by an impulsive plane impact and propagating in an inhomogeneous atmosphere. The 
detailed formulation and the solution of this problem are contained in Chapter 12 of 
Reference 35. Here we only note that the profiles of the exact solution in the region behind 
the front are such that at t z 0 auldx > 0, dplax > 0, aplax > 0; in addition, ap/ax > 0 also in 
the undisturbed medium before the front. Corresponding profiles of the exact solution as 
well as the finite difference solution obtained by the 'breakdown of discontinuity ~ c h e m e " ~ * ~ ~  
are presented in Reference 16. In this problem the exact abscissa xf of the shock front at 
t 2 0  is computed by the formula 

xf(t) = 6 In ( t  + to) 

where to is determined from the condition xo = 6 In to, x, is the given abscissa of shock front 
at t = 0. In computations by the schemez6 we have used the values h = 0.1, T = 0.007 as in 
Reference 16 which corresponded to the Courant number K = 0.4. It follows from Figure 5 
that the optimization algorithms proposed in Sections 3 and 4 are applicable also in the case 
of a non-stationary shock wave. It should be noted that in the case of both stationary 
(Figures 1, 2 and 4) and non-stationary (Figure 5) shock waves the inclusion in an 
optimization localization procedure of the information on the approximation and artificial 
viscosity moves the trajectory c( t )  to  the right in comparison with the original Miranker- 
Pironneau a lg~r i thm. '~ . ' ~  

6. CONCLUSIONS 

We have carried out an investigation of shock wave localization accuracy both for Miranker 
and Pironneau's and for some of its modifications. It is shown that the methods 
of classical variational calculus can be successfully applied for theoretical analysis of the 
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original a l g ~ r i t h m ’ ~ . ~ ~  as well as its modification (53). In particular, the results of this analysis 
of the indicate a non-coincidence of the extremal trajectory obtained as a result 
of minimization of the basic functional (9, (6), (24) with the true discontinuity trajectory at 
finite mesh sizes. At the same time an analysis of the functional (53) yields a coincidence of 
the solution of corresponding variational problem with the exact trajectory of a steady shock 
wave. These theoretical results were confirmed by practical computations. In particular, the 
use of the functional (53) and the function (72), (73) yields more accurate localization results 
as compared to the original 
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